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Motivation



Motivation

• What can dense 3D surface reconstruction accomplish?



Motivation

• Mapping: Reconstruct large scale scenes for autonomous 
navigation, quality inspection, historical preservation.

 [5] H. Hirschmuller, Stereo Processing by Semiglobal Matching and Mutual Information, (2008).

City-scale 3D reconstruction of Graz, Austria using aerial images. [6]:



Motivation

• Mapping: Reconstruct large scale scenes for autonomous 
navigation, quality inspection, historical preservation.

KITTI dataset point cloud reconstruction 

using stereo matching [3]:

Large-Scale Direct Monocular SLAM [4]:

[3] P. Alcantarilla, C. Beall, and F. Dellaert, Large-Scale Dense 3D Reconstruction from Stereo Imagery, (2013). 
[4] J. Engel, T. Schops, and D. Cremers, LSD-SLAM: Large-Scale Direct Monocular SLAM, (2014). 



Motivation

• Mapping: Reconstruct large scale scenes for autonomous 
navigation, quality inspection, historical preservation.

[7] S. Agarwal et al, Building Rome in a Day, (2011).

City-scale 3D reconstruction using tourist photographs from Flickr. [7]:



Motivation

• Communication: Reconstruct human motion for high 
quality performance capture or real time interaction.

Offline human reconstruction [1]: Real-time human reconstruction [2]:

[1] A. Collet et al, High Quality Streamable Free Viewpoint Video, (2015).

[2] M. Dou et al, Fusion4D: Real-Time Performance Capture of Challenging Scenes, (2016).



• Goal: Reconstruct a collection of 3D points given 2D images 
from multiple views.


• Steps:

1. Acquire images.          

2. Calibrate cameras (i.e. compute intrinsic parameters and 

extrinsic parameters).

3. Rectify images               

4. Estimate disparities and triangulate points.           

Motivation



Image Acquisition



• Goal: Collect images for processing.

• Design issues:

• Light spectrum?

• Global vs rolling shutter?

• Resolution (sampling density vs processing time)?

• Frame rate?

• Moving camera? Static camera? Static scene? Moving 

scene?

Image Acquisition



Image Acquisition

Color image acquired from 
the system in [1]:

[1] A. Collet et al, High Quality Streamable Free Viewpoint Video, 2015.

[9] DroneDeploy Thermal Reconstruction Documentation (link).

Infrared image acquired 
from the system in [1]. Note 
laser dot texture projection:

View of dense map formed 
using thermal aerial 

imagery [8]:

• Good results have been accomplished in the color 
spectrum, infrared spectrum, and thermal spectrum.



• Good results have been accomplished in the color 
spectrum, infrared spectrum, and thermal spectrum.

Color spectrum camera [7]:

[1] A. Collet et al, High Quality Streamable Free Viewpoint Video, 2015.

[7] Matrix Vision mvBlueFox Technical Manual (link).

[8] Tesla Autopilot Demonstration (link).

Hologram application 
described in [1]:

Autonomous driving 
application described in [8]:

Image Acquisition

https://www.matrix-vision.com/USB2.0-industrial-camera-mvbluefox.html
https://www.tesla.com/autopilot


Camera Calibration



• Goal: Estimate camera parameters that mathematically 
model physical camera properties.

• Intrinsic parameters (focal length, principal point, 

tangential distortion values, barrel distortion values).

• Extrinsic parameters (rotation and translation).

• Essential for triangulating 3D surface points given 2D 

images. 

• Heavily studied problem in computer vision and 

photogrammetry for past 20+ years.

Camera Calibration



• Pinhole camera model [10]:

[10] OpenCV 2.4.13.7 Documentation: Camera Calibration and 3D Reconstruction (link).

Camera Calibration

https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html


• Camera parameters [10]:

[10] OpenCV 2.4.13.7 Documentation: Camera Calibration and 3D Reconstruction (link).

Camera Calibration

https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html


• Approaches:

• Marker-based: 

• Compute camera parameters using images of 

calibration targets of known geometry. 

• Practical in laboratory or factory calibration scenarios 

where the highest accuracy is needed.

• Marker-less:

• Compute camera parameters using correspondences 

among images of unstructured scenes.

• Practical in the wild.


• Marker-based can be used to estimate intrinsics in the 
lab. Those intrinsics can be used as input to marker-
less methods for reconstruction in the wild.

Camera Calibration



• Approaches:

• Marker-based: 

• AprilTags [11] estimates 6DOF transformation 

between marker and camera from a single view.

• Bouguet Calibration Toolbox [12] estimates intrinsic 

and extrinsic parameters from multiple views of a 
marker.

[11] Edwin Olson, AprilTag: A Robust and Flexible Visual Fiducial System, 2011.

[12] J. Bouguet, Camera Calibration Toolbox for MATLAB, 1999 (link).

AprilTag detection and pose estimation from [11]: Marker detection and pose estimation from [12]:

Camera Calibration

http://www.vision.caltech.edu/bouguetj/calib_doc/


• Approaches:

• Marker-less: 

• Structure From Motion [13, 14] 

• Estimates camera parameters from a collection of unordered 

images, usually in an offline manner using correspondences. 

• Uses optimization [15] and invariant feature extraction [16].   


• SLAM and VO [4, 17, 18] 

• Estimate camera poses online from sequential images. 

Optimization and feature extraction [19, 20] are applied as 
well. Loop closure [21] is a key element in SLAM.  
Correspondences are also used.

[13] B. Triggs et al, Bundle Adjustment - A Modern Synthesis, 2000.

[14] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2004.

[15] A. Ranganathan, The Levenberg-Marquardt Algorithm, 2004.

[16] D. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, 2004.

[17] R. Mur-Artal et al, ORB-SLAM: a Versatile and Accurate Monocular SLAM System, 2015.

[18] C. Forster et al, SVO: Fast Semi-Direct Monocular Visual Odometry, 2014.

[19] E. Rublee et al, ORB: An efficient alternative to SIFT or SURF, 2011.

[20] E. Rosten and T. Drummond, Machine Learning for High-Speed Corner Detection, 2006.

[21] R. Mur-Artal and J. Tardos, Fast Relocalization and Loop Closing in Keyframe-Based SLAM, 2014.

Camera Calibration



Numerical descriptors of extracted features must be unique enough for features to be re-identified as 
the camera moves.
Features on the left video frame are matched with their corresponding features on the right video 
frame. Parallel lines indicate correct matches. Intersecting lines indicate mistaken matches. 
RANSAC is often used to improve match quality.



Slide adapted from [22] Fisher Yu, Multiple View 3D Reconstruction, 2014 (link).

Match F E R, t X

Five-Point Algorithm

Eight-Point Algorithm Triangulation

• Structure from motion process:

1. Estimate intrinsics matrix K using marker-based calibration.

2. In the wild, detect features and descriptors using SIFT [16].

3. Estimate fundamental matrix F using RANSAC algorithm.

4. Compute essential matrix E using relationship 

5. Compute rotation and translation using relationship 

6. Triangulate sparse 3D point cloud of SIFT features. 

7. Optimize poses: Compare reprojected features versus observations to construct 

error term. Apply an optimization technique (e.g. [15] ) that minimizes error.

E = K0TFK
E = [t]⇥R

Bundle Adjustment

Camera Calibration

http://www.apple.com


Camera Calibration

[17] R. Mur-Artal et al, ORB-SLAM: a Versatile and Accurate Monocular SLAM System, 2015.



Stereo Vision



• Using previous work, we’ve acquired images and 
camera parameters. But how do we estimate a 3D 
surface?


• Goal: Triangulate a dense point cloud using images and 
camera parameters.

Stereo Vision



Disparity Estimation

Slide credit: [23] M. Bleyer, Fundamentals of Stereo Vision.

3D View

Left 2D Image Right 2D Image

Disparity Map

Z =
fT
d



[24] R. Szeliski, Computer Vision Algorithms and Applications, 2010.

Stereo Vision



[24] R. Szeliski, Computer Vision Algorithms and Applications, 2010.

• If camera parameters are known, and 2D locations x0 and x1 are 
known, then 3D point p can be triangulated.


• If we do a trinagulation for every pixel pair match, we generate 
millions of 3D points from just two views. Thus, a dense surface.

Stereo Vision



[24] R. Szeliski, Computer Vision Algorithms and Applications, 2010.

• Dense reconstruction is therefore solved if we calculate matching 
relationships between left and right pixels.


• The idea is to search for x1 given x0 and previous parameters. 
Dense reconstruction becomes a search problem.

Stereo Vision



• In an N*N image, there are O(N2) pixels in the search space.

Stereo Vision



[24] R. Szeliski, Computer Vision Algorithms and Applications, 2010.

• Ray from c0 to x0 and ray from c0 to c1 define an epipolar plane. 
This plane intersects with the right image plane to define a right 
epipolar line.

Stereo Vision



[24] R. Szeliski, Computer Vision Algorithms and Applications, 2010.

• We observe that given c0, x0, and c1, the search for x1 is therefore 
constrained: x1 must lie on the right epipolar line. 


• Search space is now O(N) instead of O(N2)!

Stereo Vision



• Any other optimizations?

Stereo Vision



[25] D.J. Lee, Stereo Calibration and Rectification, 2012.

• If the image planes are coplanar and epipolar lines are parallel, search space 
is now a horizontal row of pixels. 


• Greatly simplifies implementation. Search is reduced to calculating 
difference between left x-coordinate xl and right x-coordinate xr i.e. the 
disparity, d. 


• Y-coordinates of matching points are equal.

f

Z =
fT
d

Stereo Vision



Stereo Vision

[24] R. Szeliski, Computer Vision Algorithms and Applications, 2010.

• Rotate both cameras so that 
they are looking 
perpendicular to the line 
joining the camera centers c0 
and c1. 


• Next, to determine the 
desired twist around the 
optical axes, make the up 
vector (the camera y axis) 
perpendicular to the camera 
center line.


• Re-scale the images to 
account for different focal 
lengths, magnifying the 
smaller image to avoid 
aliasing.



Disparity Estimation



• Goal: For each pixel in a rectified reference image, 
compute the pixel in another rectified image that samples 
the exact same point in space. 

Disparity Estimation



Disparity Estimation

Slide credit: [23] M. Bleyer, Fundamentals of Stereo Vision.

3D View

Left 2D Image Right 2D Image

Disparity Map

Z =
fT
d



Disparity Estimation

• The PatchMatch Stereo [26] algorithm for disparity estimation:

• Good results: industry standard in hologram capture.

• Compact implementation.

• Readily parallelizeable.

[26] M. Bleyer, C. Rhemann, and C. Rother,  PatchMatch Stereo - Stereo with Slanted Support Windows, 2011.



Disparity Estimation

[5] H. Hirschmuller, Stereo Processing by Semiglobal Matching and Mutual Information, 2008.

[27] J. Zbontar and Y. LeCun, Stereo Matching by Training a CNN to Compare Image Patches, 2016. 

[28] J.R. Chang and Y.S. Chen, Pyramid Stereo Matching Network, 2018.

[29] S. Duggal et al, DeepPruner: Learning Efficient Stereo Matching via Differentiable PatchMatch, 2019.


• Other Choices:

• Semi-Global Matching [5]

• Also popular.

• Accurate, but slow.


• Deep learning based methods [27, 28, 29]:

• Very promising, lots of progress.

• Difficult to create ground truth dataset.

• Difficult to generalize results from training dataset.



Disparity Estimation
• PatchMatch Stereo algorithm model:


• At each pixel , store the parameters  of a disparity plane. 


• Accounts for matching cost calculation on non-fronto-parallel surfaces.


• Query disparity at any location according to plane parameters:


• 


• Where  is the disparity at position  based on the plane parameters 
assigned to that pixel.

p ap, bp, cp, np1
, np2

, np3

dp = apx + bpy + cp

dp (x, y)

[26] M. Bleyer, C. Rhemann, and C. Rother,  PatchMatch Stereo - Stereo with Slanted Support Windows, 2011.



Disparity Estimation
• PatchMatch Stereo algorithm model:


• 


• This formulation allows for the plane parameters of one pixel at  to be 
used to compute a disparity for its neighbors , , , 

… 


1. Accounts for non-fronto-parallel  surface properties. 

2. Enables disparity plane parameters propagation from one pixel to its 

neighbors.

dp = apx + bpy + cp

(xi, yj)
(xi−1, yj) (xi, yj−1) (xi+1, yj)

(xi, yj+1)

[26] M. Bleyer, C. Rhemann, and C. Rother,  PatchMatch Stereo - Stereo with Slanted Support Windows, 2011.



Disparity Estimation

[26] M. Bleyer, C. Rhemann, and C. Rother,  PatchMatch Stereo - Stereo with Slanted Support Windows, 2011.



Disparity Estimation

[24] R. Szeliski, Computer Vision Algorithms and Applications, 2010.

[26] M. Bleyer, C. Rhemann, and C. Rother,  PatchMatch Stereo - Stereo with Slanted Support Windows, 2011.

• PatchMatch Stereo algorithm procedure:

• Random Initialization:


• For each pixel, assign random plane parameters .


• Compute cost function according to Normalized Cross Correlation in a user-
defined window size around each pixel.


• Why randomness? Law of large numbers states that with so many guesses, 
there is a high likelihood that *some* are good.


• The idea is to initialize randomly, and propagate to/from a neighbor if doing 
so improves the NCC cost. If not, attempt more random guesses.

ap, bp, cp, np1
, np2

, np3



Disparity Estimation

[26] M. Bleyer, C. Rhemann, and C. Rother,  PatchMatch Stereo - Stereo with Slanted Support Windows, 2011.

• PatchMatch Stereo algorithm procedure:

• Propagation:


• Check if propagating plane parameters from one pixel to its neighbors will 
lower the cost value for each neighbor.

• Spatial Propagation - Close neighbors in space will have similar planes. 

• View Propagation - A pixel and its match will have similar planes.

• Temporal Propagation - The same pixel will have similar plane parameters 

at times  and . 


• Iterative Refinement: 

• After each propagation opportunity randomly perturb plane parameters for a 
set number of iterations. If the NCC cost improves, keep the new plane 
parameters.

t t + 1



Disparity Estimation

[26] M. Bleyer, C. Rhemann, and C. Rother,  PatchMatch Stereo - Stereo with Slanted Support Windows, 2011.



Disparity Estimation
• PatchMatch Stereo algorithm implementation notes:


• Canonical implementation propagates according to a raster pattern i.e. to pixel 
 we attempt to propagate from pixels , , , 

. This limits propagation to a single threaded procedure due to 
dependency relationships.


• Parallel implementation propagates in 4 stages: right, down, left, up. In each stage, 
each pixel is only dependent on pixels whose coordinates differ in one direction. 
For example in the right propagation, each row of pixels can be processed 
independently. Thus an N*N image can be processed with N GPU threads.


• View propagation is implemented using left-right consistency checking. I.e. we 
compute left image -> right image disparities then compute right image -> left 
image disparities. We then compare them and invalidate pixels that disagree. With 
horizontal image mirroring, this procedure enables major code reuse.


• Areas of low texture can be handled better by multi-scale PatchMatch. I.e. we can 
downsample an image, compute its disparities using PatchMatch, then use those 
disparities to initialize a higher resolution PatchMatch run. This allows the 
algorithm to detect textures that may only be contained by the window size at 
certain scales

(xi, yj) (xi−1, yj) (xi−1, yj−1) (xi, yj−1)
(xi+1, yj−1)

[26] M. Bleyer, C. Rhemann, and C. Rother,  PatchMatch Stereo - Stereo with Slanted Support Windows, 2011.



Results



Results
Two-View PatchMatch Surface Reconstruction (~500K points)



Results
Two-View PatchMatch Surface Reconstruction (~500K points)



Results
Multi-View PatchMatch Surface Reconstruction (millions of points)

[30] D. Cernea, OpenMVS, https://github.com/cdcseacave/openMVS.
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